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Abstract: The simple statistical treatment of the temperature equilibration of two two-level systems provides an 
easily understandable example of changes in entropy during reversible and irreversible processes. This treatment 
yields the fundamental formula dS = dqrev/T; thus, it provides a useful link between the classical (macroscopic) 
and statistical (microscopic) view of thermodynamic processes. 

Introduction 

Classical thermodynamics treats matter as a continuum. This 
does not provide a simple picture of what is behind concepts 
such as internal energy and entropy on a molecular level. 
Authors of introductory textbooks, therefore, invariably add a 
microscopic picture of thermodynamic processes to this 
classical, macroscopic treatment, but only a few textbooks [for 
instance; 1, 2] present a thorough statistical treatment in close 
connection with classical thermodynamics. This is because the 
quantitative treatment of thermodynamics from a molecular 
point of view demands the knowledge of quantum mechanics 
and statistical mechanics. Textbook authors usually confine the 
link to statistical mechanics to the simple example of the 
entropy change during the isothermal expansion of an ideal 
gas. 

Isothermal Gas Expansion 

Most textbooks [for instance, 3–6] either construct a loose 
connection between entropy and probability, or they present 
Boltzmann’s formula 

 lnS k W=  (1) 

Some authors use the common definition (0 ≤ W ≤ 1) of 
probability, W, in this context instead of the correct 
thermodynamic definition (W ≥ 1). This may be partially 
justified because of the sketchy reasoning within the context. 
Nevertheless, it can be presented more correctly, and with little 
additional expense, by writing the thermodynamic probability 
as the number of ways of distributing NA (Avogadro’s number) 
gas molecules among Z cells of molecular dimensions and 
volume, v, into which the total gas volume, V, is imagined to 
be divided. 
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Because for an ideal gas Z is very large compared to NA, all 
factors up to NA − 1 can be neglected in the numerator so that 
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Thus, the entropy change for the isothermal volume change is 
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Temperature Change at Constant Volume 

There is a similar logarithmic dependence of the entropy on 
temperature 
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This is harder to show on a statistical basis, but it is more 
interesting, because it involves heat or energy transfer and 
yields the fundamental formula 

 revdq
dS

T
=  (6) 

when calculated statistically. A simple special case of the 
statistical calculation, which is easy to understand and clearly 
shows important features of entropy changes during reversible 
and irreversible changes (often confusing to students), is 
demonstrated here. Knowledge of Boltzmann’s distribution 
law and the quantization of energy is assumed. 

We consider two two-level systems at two different 
temperatures that approach one common temperature by 
thermal contact (see Figure 1). The entropy change for the 
process in the initially colder system (subscript c) is given by 
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Figure 1. Temperature equilibration of two two-level systems. The 
upper (warmer) system and the lower (colder) system (left side of 
figure) reach a common temperature after thermal contact (right side 
of figure). The letters n, m, and p represent integers and designate the 
level populations that define the temperatures by Boltzmann’s 
distribution law. 

If the initially warmer system is considered, the sign of p is 
reversed in equation 7. We now distinguish two cases, 
reversible and irreversible. 

The reversible case is characterized by quasi-equilibrium, 
which means the temperatures of the two systems are virtually 
identical. They are, therefore, represented by the common 
letter, T, in the following. The population deviation from 
thermal equilibrium, p, is much smaller than n and m; we 
assume 1 for simplicity. Then, for the initially colder system 
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The ratio of the populations m and n of the two levels can be 
expressed by Boltzmann’s equation 

 c,rev

( ) /
ln e n mn m qkT

S k
T T

ε − εε − ε∆ = = =  (9) 

The last equality expresses the fact that the energy transfer 
between the two systems is by heat flow and corresponds to 
the energy of one particle changing levels in each of the two 
systems. 

The entropy change of the initially warmer system is given 
by 
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Thus, the total entropy change for the reversible process is 
zero 

 total,rev c,rev w,rev 0S S S∆ = ∆ + ∆ =  (11) 

For the irreversible case the total entropy change is 
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Rearrangement gives 
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Each factor of the two products is larger than 1, which 
means that the total entropy change of the irreversible heat 
transfer is positive 

 total,irr 0S∆ >  (14) 

Another irreversible case that can be demonstrated is the 
infinitesimal heat transfer from a warm system at temperature 
Tw to a cold system at temperature Tc in which the populations 
of all levels change by only one unit (∆p = ±1). The entropy 
change for the infinitesimal cooling of the warm system is 
given by 
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The corresponding expression for the infinitesimal warming of 
the cold system is 
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Thus, the total entropy change in the process is 
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Conclusions 

The simple statistical calculations described above yield 
results for the reversible or irreversible entropy changes in a 
thermodynamic process. They show that the total entropy 
change of a closed system is zero during the reversible process 
and positive during the irreversible process. The reversible 
process is mathematically shown to be a limiting case of the 
irreversible process, even for heat flow from a warmer to a 
colder body, commonly regarded as a typically irreversible 
process. The fundamental formula dS = dqrev/T is shown to be 
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valid for heat flow in the reversible case; whereas, it does not 
apply during an irreversible heat flow. The appearance of the 
formula dS = dqrev/T in the description of the entropy changes 
in an infinitesimal and irreversible heat flow from a warmer to 
a colder system points to the reversible path along which the 
same change can take place. It includes a third system with 
which heat is reversibly exchanged at the two temperatures in 
separate contacts. The temperature change of the third system 
between the contacts may take place isentropically, for 
instance, by adiabatic expansion and compression. Although 
no general validity of the above statements can be derived 
from the example calculated statistically, the treatment 
provides detailed insight into the process and helps students to 
understand the meaning of the general laws that are 
demonstrated here for a special case. 
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